

Modeling Evidence-Based Interventions (EBI) Impact Workgroup Update

Stephanie B. Wheeler, PhD, MPH Health Policy and Management University of North Carolina at Chapel Hill

This presentation was supported by Cooperative Agreement Number U48 DP005006 from the Centers for Disease Control and Prevention. The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Stephanie Wheeler, UNC

Our Team

Florence Tangka, CDC

Mike Pignone, UNC

Melinda Davis, OHSU

Lisa Richardson, CDC

Kristen Hassmiller Lich, UNC

Stephanie Renfro, OHSU

Maria Mayorga, NC State

Justin Trogdon, UNC

Paul Shafer, UNC

Jackie Shannon, OHSU

Leah Frerichs, UNC

John McConnell, OHSU

Sarah Drier, UNC

Modeling EBI Impact Workgroup Objectives

- Inform cancer screening-focused EBI implementation planning, practice-level change, and policies at the state and national levels
- Use models to simulate and compare the impact of alternate "what if" scenarios on:
 - Cancer screening rates in a given year and over time
 - The percent of subpopulations up-to-date with routine screening, cancer incidence, cancer stage at diagnosis, cancer deaths and/or life-years lost due to cancer
 - Costs and cost-effectiveness of CRC screening-focused interventions
- Integrate best available evidence into decision support models to increase cancer screening overall and address observed disparities

- Claims data only analyses:
- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?
- Simulation analyses:
- 3) What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?*
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?*
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?*

* in progress

What's Next for the Modeling EBI Workgroup

- What would it take to get to 80% by 2018 in NC? In OR?
- How can we best integrate decision support modeling with implementation science for CRC screening?
 - To inform implementation of specific CRC screening EBIs in geographically distinct areas and populations, e.g.:
 - Urban, publicly insured populations
 - FQHCs
 - CCOs in OR
 - Eastern NC
 - To develop best practices for using simulation in stakeholder implementation decision support

Model schematic

Rjcham

Home.

Illustrative Model Outputs

Modules Examples of Simulation outputs Clinical or health Costs, cost-effectiveness and other policy Intervention consequences of interventions or policies scenarios Healthy Prevalence of tobacco and alcohol use lifestyle Percentage up-to-date with screening Prevalence of benign tumors (e.g. adenomas) Average life expectancy The Cancer mortality rates by race and ethnicity population Service volume by facility Healthcare infrastructure Percent up-to-date with screening Cancer screening, Number of false positives diagnosis, treatment Adherence rate of diagnostic testing & surveillance **Cancer incidence** Stage of cancer diagnoses Natural history **Cancer mortality** of cancer **Cancer cases averted** Life years gained.

]]]]

CENTER FOR HEALTH PROMOTION AND DISEASE PREVENTION

- Claims data only analyses:
- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?
- Simulation analyses:
- **3)** What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?

Aim 1 Progress (CRC Screening Variation in **Oregon - County)**

Overall

Highlights

Preventive Medicine Available online 13 May 2017 In Press, Accepted Manuscript - Note to users

Melinda M. Davis^{a, b,} 📥 🖼, Stephanie Renfro^{c, M}, Robyn Pham^{b, M}, Kristen Hassmiller Lich^{d, M} Jackilen Shannon^{e, M}, Gloria D. Coronado^{f, M}, Stephanie B. Wheeler^{d, g, h, M} Show more

https://doi.org/10.1016/j.ypmed.2017.05.001

Get rights and content

* PM

· Counties with higher socioeconomic deprivation displayed lower CRC testing. · Work to increase CRC testing in targeted counties and populations is needed.

· Individual, community, and health system-level factors impacted CRC testing

Despite insurance, 58% had not received colorectal cancer (CRC) testing.

CRC testing varied from 22.4% to 46.8% across Oregon's 36 counties.

- Controlling for age, beneficiaries had greater odds o Josephin Hood Rive if they were female (OR 1.04, 95% CI 1.01-1.08), c Deschute Clackama urban residents (OR 1.14, 95% CI 1.07-1.21). Multnoma
- Po Columbi Accessing primary care (OR 2.47, 95% CI 2.37-2.5) Washingto endoscopy (OR 0.98, 95% CI 0.92-1.03) was associ...

Sherma Klamat

Tillamoo Harne

Medicaid

Unemployed Uninsured Fam Med MDs Specialists

Jefferson - 22.4	16.3	21	10 7	25.1	41	0.9
Malheur - 23.4	20.2	25.8	87	22	13	3.3
Union - 26.6	10.7	19	8.2	17.2	1.9	7
Curry - 27.6	9.2	17.9	10.6	18.7	4.5	1.8
Lake - 27.9	13.6	19.8	11.1	20.2	51	0
Grant - 28.5	11.2	18.8	11.8	20.7	9.6	ő
Gilliam - 28.9	10.4	11.6	6.9	15.2	0	0
Wallowa - 29.0	7.7	16.6	9.9	19.5	8.8	29
Wasco - 29.4	16.7	17	7.1	21.9	3.5	43
Morrow - 30.0	21.7	15.5	7.8	20.1	27	0.9
Baker - 30.5	11.9	19.3	9.2	17.4	69	19
Umatilla - 30.5	17.8	17.5	8.1	21	2	2
Sherman - 30.7	9.8	14.8	7.3	16.6	5	5
Klamath - 31.4	12.8	19.9	10.7	21.6	83	33
ïllamook - 32.1	11.5	15.4	7.2	22.0	55	2
Harney - 32.8	10.6	18.5	12.3	21.9	83	0
Coos - 33.2	12.2	20.6	0.0	18.6	3.2	6.4
Yamhill - 33.8	12.2	16.9	7.4	17.4	3.2	4.7
Wheeler - 34.9	12.0	21.8	7.1	22	0	0
Clatsop - 35.7	8.2	17.1	6.8	17.5	4	3.5
Lincoln - 35.8	10.7	18.5	8.2	21.7	2.2	2.8
Crook - 36.4	14.6	18.0	12.3	18.6	3.0	2.0
sephine - 37.6	11.8	22.2	10.9	19.4	3.4	3.7
Douglas - 38.6	13.2	21.3	10.8	18.2	1 9	5
Lane - 39.3	9.4	21.0	7.6	17.7	4	73
ood River - 40.2	17.7	14	6.1	21.6	13.3	71
Linn - 42.2	11.3	17.6	0.7	16.6	4.5	24
eschutes - 42.8	7	15.8	95	18.2	3.9	83
ackamas - 43.0	7.6	93	6.8	13.7	2.6	8.1
Marion - 43.3	16.9	20.2	8.4	20.6	4.2	4.7
Jackson - 43.9	10.6	18.1	0.4	10.2	4.2	8.1
ultnomah - 44.1	10.5	18.3	6.9	16.7	4.5	19.4
Polk - 44.7	10.0	16.2	7.6	15.6	2.4	2.6
Columbia - 45.0	11.1	15.8	8.2	15.2	1.4	1.4
shington - 45.9	0.3	12.1	6.3	14.1	2.6	10.4
Benton - 46.8	0.0	40.7	0.0	42.7	2.0	42.2

• Claims data only analyses:

- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?
- Simulation analyses:
- **3)** What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?

Aim 1 Progress (CRC Screening Variation in Oregon – Coordinated Care Organizations)

- RQ: How might Medicaid ACOs affect patterns of CRC screening and testing modalities used over time and across geographic regions?
 - Participants: Oregon Medicaid members between January 2010 and December 2014 who were age-eligible for CRC screening and met study inclusion criteria.
 - Measures: We examined incident (first evidence of) CRC screening and corresponding testing modality (i.e., colonoscopy, sigmoidoscopy, fecal testing) at the person level.

- Claims data only analyses:
- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?
- Simulation analyses:
- 3) What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?

Simulation Model Updates since May 2016

- Added racial specificity in underlying natural history of CRC
- Updated input parameters (compliance with surveillance etc.) based on evidence
- Included more realistic trajectories of colonoscopy screening
- Updated underlying synthetic population to 2010 Census
- Estimated impact of ACA on insurance coverage using BRFSS and Medicaid eligibility criteria, both NC and OR: initial effect in 2014 & Secondary effect 2014-2015

- Surveyed the evidence regarding costs of post-screening follow-up care
- Replacing NC with OR data and statistical models
- Recalibrated secular trend and self report adjustment (for NC) to match updated BRFSS

FOR HEALTH

PROMOTION AND

Change in disparity gap between White and African American males in the percent up-to-date with colorectal cancer screening from baseline to 2023 by NC geographic regions

Control

Medicaid Expansion (High Enrollment and Compliance)

Differences in *cumulative CRC screening and treatment cost savings per person* between policy scenarios and the control scenario

ACA and Medicaid Expansion result in substantial long-term cost savings, especially for African American males

- Claims data only analyses:
- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?

• Simulation analyses:

- 3) What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?

Expanding Coverage is Not Enough: Estimating the Impact of ACA/Medicaid Expansion

- Insurance uptake mechanisms
 - Medicaid
 - Newly eligible
 - "Woodwork" enrollees
 - Insurance Exchanges/Marketplace
 - Newly enrolled through self-pay
 - Previously eligible for employer-sponsored coverage but unenrolled
 - Predicted uptake modeled using 2013-2015 BRFSS by age group, gender, race/ethnicity, income, and marital status

Simulating the impact of insurance expansion on CRC outcomes in NC & OR

	North Carolina	Oregon
Status Quo	ACA w/o Medicaid expansion	ACA w/ Medicaid expansion
Pre-exchange insurance	No ACA No Medicaid expansion	No ACA No Medicaid expansion
Complete Repeal of ACA	Includes loss of insurance from the exchanges	Includes loss of insurance from the exchanges and Medicaid
АНСА	Based on CBO estimates of insurance loss	Based on CBO estimates of insurance loss
ACA + Medicaid expansion (on January 2018)	As operationalized in other states since 2014	
Universal insurance	Medicare for all	Medicare for all
		CENTER F

DISEASE PREVENTION

- Claims data only analyses:
- 1) What is the regional variation in CRC screening within publically and commercially insured populations in <u>OR</u>?
- 2) What is the regional variation in CRC screening modalities used across CCOs in <u>OR</u>?

• Simulation analyses:

- **3)** What is the projected impact of Medicaid expansion on CRC screening and outcomes among African American males in <u>NC</u>?
- 4) What is the impact of the ACA private insurance expansion on CRC screening and outcomes in <u>NC</u>?
- 5) What is the impact of the ACA private insurance expansion and Medicaid expansion on CRC screening and outcomes in <u>OR</u>?
- 6) What interventions are recommended to increase CRC screening in publically insured populations in <u>OR</u>?

EBI Screening Intervention Scenarios for OR

- Existing (Simulated in NC)
 - Mailed reminders (no FIT kit)
 - Mass media campaigns
 - Vouchers for uninsured
 - Endoscopy expansion
- Novel (Planned for OR)
 - Direct Mail of FIT (potential variations, see Table)
 - Outreach (navigators, panel managers)
 - Practice Improvement?

PREVENTING CHRONIC DISEASE

Volume 14, E18

FEBRUARY 2017

ORIGINAL RESEARCH

Cost-Effectiveness Analysis of Four Simulated Colorectal Cancer Screening Interventions, North Carolina

 Kristen Hassmiller Lich, PhD¹; David A. Cornejo²; Maria E. Mayorga, PhD²; Michael Pignone, MD, MPH^{3,4,5,6}; Florence K.L. Tangka, PhD⁷;
Lisa C. Richardson, MD, MPH⁷; Tzy-Mey Kuo, PhD, MPH³; Anne-Marie Meyer, PhD^{3,8};
Ingrid J. Hall, PhD, MPH⁷; Judith Lee Smith, PhD⁷; Todd A. Durham, MS¹;
Steven A. Chall, MS⁹; Trisha M. Crutchfield, MHA, MSIS^{4,6};
Stephanie B. Wheeler, PhD, MPH^{1,3,4}

Table. Mailed stool test variations – assumes that return postage is included

Source	Test Characteristics	Patient Characteristics	Follow-up Intensity (and who delivered)	Patient Incentive(s)
Clinic	Type/sensitivity (FIT vs FOBT)	Screening history (yes, no)	None	None
Health Plan	Samples required (one, two, three)	Ethnicity (Hispanic, Non- Hispanic)	Reminders: Auto, live, text	\$25
Combo		Insurance Type (Medicaid, Commercial)	Reminders + Navigator follow-up	\$50
		Geographic location		

A Prevention Research Center Designated by the Centers for Disease Control and Prevention

What's Next?

What's Next for the Modeling EBI Workgroup

- What would it take to get to 80% by 2018 in NC? In OR?
- How can we best integrate decision support modeling with implementation science with a focus on CRC screening?
 - To inform implementation of specific CRC screening EBIs in geographically distinct areas and populations, e.g.:
 - Urban, publicly insured populations
 - FQHCs
 - CCOs in OR
 - Eastern NC
 - To develop best practices for using simulation in stakeholder decision support

A Prevention Research Center Designated by the Centers for Disease Control and Prevention

Prevention Research Centers

A Prevention Research Center Designated by the Centers for Disease Control and Prevention

Prevention Research Centers

A Prevention Research Center Designated by the Centers for Disease Control and Prevention

Finalizing intervention plans in the face of uncertainty

	Reccommenda	tion base	ed on most	Cost	Effe	ctive	Life	Yea	rs U1	٢D																						
	Mass Media Cos Mailed Reminder	t • Cost	3,000,000 1,679,578																													
	WTP		10																													
				_										м	ailed	Пеп	ninde	ег														
			Cos																													
			0	22	8	²	2	8	8	0	8	940	930	770	040	88	910	530	920	60	130	370	260	400	190	250	020	070	200	850	50	230
			Ĕ	12	6	8	8	6	55	-01	328	22	8	82	94	8	5	8	0	12	9	9	6	8	8	5	8	8	1	8	46,1	34
			/ax	51	325	432	54	647	126	8	396	0		2	5	5	0	2	200	5	0	5	23	0	0	4	2	20	23	00	0	0
			2		63	63			63	43	63	5	00	609	57		~		0		сэ (С)	699 	()	*	с.	63	67 67	699		69	63	
			2	815	292	408	135	760	359	207	328	53	6	12	40	õ	0	82	8	Ř	<u>6</u>	8	02(640	6	12	00	207	120	8	60	423
			5	5	32	43	54	34.7	22	98	8	6		8	99	20	160	2	ò	<u>6</u>	3	33	2	8	33	549	8	8	2	82	34	33
			- Z			~						-			-	-	-	-					UN	0	CN.	C N	04	0	CN.	0	04	(*)
	Max Total Cos Yr	's UTD	Effect	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
	\$54,350	5,435	0.2	2 N	N	N	N	N	Ν	Ν	N	N	N	Ν	Ν	N	Ν	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MB	MR	MR	MB
	\$125,050	12,505	0.3	8 N	N	N	N	N	N	N	N	N	N	N	N	N	N	MR	MR	MR	MR	MR	MR	MB	MR	MR	MR	MR	MR	MR	MR	MR
	\$221,050	22,105	0.4	I N	N	N	N	N	N	N	N	N	N	N	N	N	N	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR
	\$350,370	35,037	0.5	D N	N	N	N	N	N	N	N	N	N	N	N	N	N	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR
	\$507,620	50,762	0.6		N	N	N	N	N	N	N	N	N	N	N	N	N	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR	MR
	\$689,530	68,953	0.7			N	N	N	N	N	N	N	N	N	N	N	N	MH	MH	MR	MH	MR		MH	MR	MH	MH	MH	MB	MR	MH	MH
	\$901,850	30,185	0.8		N	N	N	N	N	N	N	N	N	N	N	N	N	MH	MH	MR	MR	MR		MH	MH	MB	MR	MR	MB	MR	MH	MH
	\$1,135,140 #1,200,cnn	113,614 120.0cm	0.5	1 N		N N	N	N	N N	N	N	N N	N	N N	N	N	N		MB	MB	MB			MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$1,538,800	169 / 95	11	1 N	N	N	N	N	N	N	N	N	N	N	N	M	M	MB	MB	MR	MR	MR	MB	MB	MR	MR	MB	MB	MB	MR	MR	MB
	\$1,034,030	202 403	12		N	N	N	N	N	N	N	N	N	N	N	N	N	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$2,331,030	233 103	13		N	N	N	N	N	N	N	N	N	N	N	N	N	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$2,606,950	260,695	1.4	I N	N	N	N	N	N	N	N	N	N	N	N	N	N	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$2,899,460	289,946	1.5	i N	N	N	N	N	N	N	N	N	N	N	N	N	N	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$3,210,460	321,046	1.6	MM 6	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
5	\$3,513,470	351,347	1.7	7 MM	I MM	ΜМ	ΜМ	ΜМ	ΜМ	ΜМ	MM	ΜМ	ΜМ	ΜМ	MM	MM	ΜМ	ΜМ	ΜМ	ΜМ	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB	MB
	\$3,848,570	384,857	1.8	8 MM	I MM	ΜМ	ΜМ	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	ΜМ	MM	MM	MB	MB	MB	MR	MR	MB	MB	MR	MB	MR.
20	\$4,200,280	420,028	1.9	MM	I MM	MM	MM	MM	ΜМ	MM	MM	MM	ΜМ	ΜМ	MM	MM	\overline{M}	\overline{M}	ММ	ΜМ	MM	MM	MM	MМ	MB	MR	MR	MB	MR	MR	MB	MR.
	\$4,554,260	455,426	2	2 MM	I MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MМ	ΜM	ΜM	MM	MR	MB	MB	MR	MR	MR.
	\$4,931,800	493,180	2.1	1 MM	I MM	ΜМ	ΜМ	ΜМ	ΜМ	MM	MM	ΜМ	ΜМ	ΜМ	MM	MM	MM	MM	ΜМ	ΜМ	MM	ΜМ	ΜМ	ΜМ	ΜМ	MM	MM	MM	MB	MR	MR	MB
	\$5,324,040	532,404	2.2	2 MM	I MM	MM	ΜМ	MM	ΜМ	MM	MM	ΜМ	MM	MM	MM	MM	MM	ΜM	ΜМ	MM	MM	MM	MМ	ΜМ	ΜМ	MM	MM	MM	MM	ΜM	MM	MR
	\$5,733,080	573,308	2.3	B MM	I MM	ΜМ	ΜМ	MM	ΜМ	MM	MM	ΜМ	ΜМ	ΜМ	MM	MM	MM	ΜМ	ΜМ	ΜМ	MМ	ΜМ	ΜМ	ΜМ	ΜМ	MM	MM	MM	MM	ΜM	MM	MM
	\$6,155,260	615,526	2.4	MM	I MM	MМ	MM	MM	MM	MM	MM	MМ	MМ	MM	MM	MM	MM	MM	MM	ΜМ	MМ	MМ	MМ	MМ	MМ	MM	MM	MM	MM	ΜM	MM	MМ
	\$6,581,640	658,164	2.5	5 MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	ΜМ	ΜМ	MМ	MM	MM	MM	MM	ΜM	MM	MM
	\$6,842,500	684,250	2.6	6 MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
	\$7,094,760	709,476	2.7	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
	\$7,348,660	734,866	2.8		MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
	\$7,599,340	759,934	2.9			MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
	SZ 84Z 64H	/84 /64	1 3		I MIM	I MIMI	I MIM	I MIM		I MIM	I MIMI	I MIM I			I VIVI	IVIVI	IVIVI	IVIV.			IMP/	I MIM	I IVINI	IVIVI	IVIVI	I VIVI	IVIVI	IVIVI		TVIVI	I VIVI	IMIM I

lass Media

A Prevention Research Center Designated by the Centers for Disease Control and Prevention

CENTER FOR HEALTH PROMOTION AND DISEASE PREVENTION

Acknowledgments

- CDC SIP 14-011 Cancer Prevention and Control Research Network (CPCRN) (PI: Wheeler)
- CDC SIP 11-041 "Behavioral economics of colorectal cancer screening in underserved populations" (Co-PIs: Pignone and Wheeler)
- AHRQ 1-K-12 HS019456-01 Mentored Clinical Scientists Comparative Effectiveness Development Award (PI: Guise; Scholar: Davis)
- AHRQ 1-K-12 HS019468-01 Mentored Clinical Scientists Comparative Effectiveness Development Award (PI: Weinberger; Scholar: Wheeler)
- NIH K05 CA129166 Established Investigator Award in Cancer Prevention and Control: Improving Cancer-Related Patient Decision Making (PI: Pignone)
- NC Translational and Clinical Sciences Institute Pilot Grant "Using systems science methods to improve colorectal cancer screening in North Carolina" (PI: Lich)
- CMMI-1150732 CAREER: Incorporating Patient Heterogeneity and Choice into Predictive Models of Health and Economic Outcomes". National Science Foundation (PI: Mayorga)
- University of North Carolina at Chapel Hill Cancer Research Fund

Oregon vs. North Carolina

	Oregon	North Carolina
Population, 2014	3,970,239	9,943,964
Persons 65 years and over, 2013	15.5%	14.3%
Females	50.5%	51.3%
Race/Ethnicity (selected), 2013		
White alone	88.1%	71.7%
Black or African American alone	2.0%	22.0%
Hispanic or Latino	12.3%	8.9%
Persons below poverty level, 2009-2013	16.2%	17.5%
Land area in square miles, 2010	95,988	48,618
Persons per square mile, 2010	39.9	196.1

Source: http://quickfacts.census.gov/qfd/index.html

Prevention Research Centers

