

Technical Considerations: the past, present and future of simulation modeling of colorectal cancer

EDWARD P. FITTS DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

Siddhartha Nambiar, Rachel Townsley, Maria Mayorga North Carolina State University

Kristen Hassmiller Lich, Stephanie Wheeler University of North Carolina-Chapel Hill

Background on Colorectal Cancer

- In 2012 only about 65% of individuals were up-to-date with screening
- 27% had never screened
- Improving screening rates is a priority

Elements of CRC Simulation Models

Example Cancer Evolution Model

CRC Simulation Model Paradigms

Discrete Event Simulation Models	Support for Individual Patient Simulation (IPS).Flexibility for patient-patient, patient-environment interaction.
Markov Models	 Enumerate health states a person will experience during the course of the disease. The changes in state are described using transition diagrams very similar to flow charts.
Stochastic Microsimulation Models	 "Stochastic" - Models simulate sequences of events by drawing from distributions of probabilities or durations. "Microsimulation" - persons are moved through the model one at a time.

CRC Simulation Model- Development History

CPCRN Gancer Prevention and Control Research Network

Sample Markov Model Structure

- UCSF (University of California, San Francisco) Model - a cohort based Markov model from age 50 until death.
- Monte Carlo simulation that runs through the model 3500 times to determine approximate values for the percent of people in each state at a given time.
- Has a small probability for cancer to develop without developing from an adenoma.

V-NC Model

- Primary Simulation Objects
 - Employs an **OOS** (Object Oriented System), driven by a modelindependent database.
 - Allows for convenient modeling of causal and treatment pathways.
 - The primary object in the CRC simulation is the person.
 - The replication will be terminated when the person dies or when statistics collection ends.

MIcrosimulation SCreening ANalysis (MISCAN)

- MISCAN–Colon is a micro– simulation program, generating individual life histories.
- Uses the Monte Carlo method to simulate all events in the program.
- Possible events are birth and death of a person, adenoma incidence and transitions from one state of disease to another.

North Carolina Colorectal Cancer (NC-CRC) model

Outline-

- Designed to support decision making regarding population screening for colorectal cancer within the state of North Carolina.
- Simulates cancer incidence and mortality by stage, age and calendar year.
- The model can be used to test the effects of various interventions on life-years and costs by increasing an individual's probability of being screened for CRC.

History-

• Based significantly on the MISCAN-COLON model (Loeve et al. 1999) and the work of Subramanian and colleagues. (2005)

Expansion on other simulation models

- Applying statistical models from administrative claims data to predict the preferred screening modality of individuals and compliance with screening.
- Calibrating natural history parameters so that the incidence, age and stage of CRC diagnosis closely match registry data specific to the state of NC.
- Models insurance and allows status to change over time.
- Incorporating the effects of **population-level interventions** to increase compliance with CRC screening recommendations.

Model Structure

Cancer Prevention and Control Research Network

Elements of Models

Parameters- Output

Object Based Model Structure

Limitations and Challenges

- Model is highly data intensive.
- Meant to inform population guidelines and is based on general population trends.
- Model can end up requiring extensive computational resources.

Future of CRC Simulation Models

• Optimization algorithms to generate candidate follow-up strategies for specific patient subgroups.

Questions/Discussions/Comments?

Acknowledgements

This publication presentation was supported in part by:

- Cooperative Agreement Number U48 DP005017-01S83 from the Centers for Disease Control and Prevention and the National Cancer Institute.
- CDC SIP 11-041 "Behavioral economics of colorectal cancer screening in underserved populations" (Co-PIs: Pignone and Wheeler)
- AHRQ 1-K-12 HS019468-01 Mentored Clinical Scientists Comparative Effectiveness Development Award (PI: Weinberger; Scholar: Wheeler)
- NIH K05 CA129166 Established Investigator Award in Cancer Prevention and Control: Improving Cancer-Related Patient Decision Making (PI: Pignone)
- NC Translational and Clinical Sciences Institute Pilot Grant "Using systems science methods to improve colorectal cancer screening in North Carolina" (PI: Lich)
- CMMI-1150732 CAREER: Incorporating Patient Heterogeneity and Choice into Predictive Models of Health and Economic Outcomes". National Science Foundation (PI: Mayorga)

Additional Slides

Assumptions(MISCAN)

- Demography Assumptions
 - The life table differs per birth cohort.
 - Death from colorectal cancer and death from other causes are considered independent from each other.
- Natural History Assumptions
 - Focus on the initiation, progression and response to treatment of colorectal cancer in the model.
- Screening Assumptions
 - Focus on all aspects of screening, including compliance and operational characteristics of the screening process.

Statistical Model Description

$$logit(\pi_{ij}) = Y_{ij} = \beta_{0j} + \sum_{k} \beta_k X_{ik} + \sum_{l} \beta_l X_{jk} + \epsilon_{ij}$$
$$\pi_{ij} = \frac{e^{Y_{ij}}}{1 + e^{Y_{ij}}}$$

 π_{ij} - Probability of binary outcome (CRC Screening vs No Screen or Colonoscopy vs FOBT) for person i at county j

 $\boldsymbol{\beta}_{0j}$ - County level intercept

X_{*ik*} - Person level attributes (race, gender, etc)

 X_{jk} - County level attributes (distance to endoscopy facility)

Age Cohorts Included In Model

- Age;
- Sex;
- Race (white, black, Hispanic, other);
- Smoking status (current, former, never);
- Household income (<\$25,000, \$25,000-<\$50,000, ≥\$50,000);
- Insurance status (none, private, Medicare, Medicaid, dual Medicare and Medicaid);
- Education (not complete college, completed college);
- Residential location (zip code).
- State health insurance program participation (SHEP, not a participant, participant)
- Marital status for privately insured individuals (married, unmarried, unknown)

Process flow of lesion progression

Compliance process flow

Testing process flow

